Winter term 2020/21-Algebra II - Algebraic Number Theory

Problem Sheet 10

Problem 1

Let R be an I-adically complete ring.
(a) An idempotent is an element e with $e^{2}=e$. Prove that the idempotents of R are in bijection with those of R / I.
(b) Show that every maximal ideal of R contains I.

Problem 2

Use Hensel's Lemma to prove the following.
(a) For every $a \in \mathbb{Z},(a, p)=1$, there is a unique ($p-1$)-st root of unity $\zeta \in \mathbb{Z}_{p}$ with $\zeta \equiv a$ $\bmod p$.
(b) Assume that $n \geq 1$ and $a \in \mathbb{Z}$ are both prime to p. Show that the equation $x^{n}=a$ is solvable in \mathbb{Z}_{p} if and only if it is solvable in \mathbb{F}_{p}.

Problem 3

Let L / K be a field extension; assume it can be written as $L=\cup_{i \in \mathbb{N}} L_{i}$ for a sequence of subfields

$$
K \subseteq L_{1} \subseteq L_{2} \subseteq \ldots \subseteq L_{i} \subseteq \ldots \subseteq L
$$

with each L_{i} / K finite Galois.
(a) Show that the group G of field automorphisms of L / K coincides with the inverse limit

$$
\lim _{i \in \mathbb{N}} \operatorname{Gal}\left(L_{i} / K\right)
$$

(b) Endow G with the inverse limit topology w.r.t. the discrete topology on all $\operatorname{Gal}\left(L_{i} / K\right)$. Deduce from usual Galois theory that there is a bijection

$$
\begin{array}{rlc}
\{\text { intermediate fields } K \subseteq M \subseteq L\} & \cong & \{\text { closed subgroups } H \subseteq G\} \\
M & \longmapsto & \left\{\alpha \text { s.th. }\left.\alpha\right|_{M}=\mathrm{id} \mathrm{\}}\right. \\
\{x \text { s.th. } \alpha(x)=x \forall \alpha \in H\} & \longleftrightarrow & H .
\end{array}
$$

Problem 4

Determine the Galois groups of the following field extensions.
(a) The extension $\overline{\mathbb{F}}_{p} / \mathbb{F}_{p}$, where $\overline{\mathbb{F}}_{p}$ denotes an algebraic closure of \mathbb{F}_{p}.
(b) The extension $\mathbb{Q}^{\text {cyc }} / \mathbb{Q}$, where $\mathbb{Q}^{\text {cyc }} \subseteq \mathbb{C}$ is the union of all cyclotomic extensions $\left\{\mathbb{Q}\left(\zeta_{n}\right)\right\}_{n \in \mathbb{N}}$.

